心脏磁共振(CMR)序列随着时间的推移可视化心脏功能的体素。同时,基于深度学习的可变形图像注册能够估计离散的向量字段,这些矢量字段将CMR序列的一个时间步骤扭曲为以下方式,以一种自我监督的方式。但是,尽管这些3D+T向量领域中包含的信息来源丰富,但标准化的解释具有挑战性,到目前为止,临床应用仍然有限。在这项工作中,我们展示了如何有效使用可变形的矢量场来描述心脏周期的基本动态过程,形式是派生的1D运动描述符。此外,基于收缩或放松心室的预期心血管生理特性,我们定义了一组规则,可以鉴定五个心血管阶段,包括末端 - 末端(ES)和末端diastole(ED),而无需使用标签的使用情况。我们评估了运动描述符在两个具有挑战性的多疾病, - 中心, - 扫描式短轴CMR数据集上的合理性。首先,通过报告定量措施,例如提取相的周期性框架差异。其次,通过定性地比较一般模式,当我们时间重新样本和对齐两个数据集的所有实例的运动描述符时。我们方法的ED,ES密钥阶段的平均周期框架差为0.80 \ pm {0.85} $,$ 0.69 \ pm {0.79} $,比观察者间的可变性略好($ 1.07 \ pm {0.86} $, $ 0.91 \ pm {1.6} $)和监督基线方法($ 1.18 \ pm {1.91} $,$ 1.21 \ pm {1.78} $)。代码和标签将在我们的GitHub存储库中提供。 https://github.com/cardio-ai/cmr-phase-detection
translated by 谷歌翻译
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Security issues are threatened in various types of networks, especially in the Internet of Things (IoT) environment that requires early detection. IoT is the network of real-time devices like home automation systems and can be controlled by open-source android devices, which can be an open ground for attackers. Attackers can access the network, initiate a different kind of security breach, and compromises network control. Therefore, timely detecting the increasing number of sophisticated malware attacks is the challenge to ensure the credibility of network protection. In this regard, we have developed a new malware detection framework, Deep Squeezed-Boosted and Ensemble Learning (DSBEL), comprised of novel Squeezed-Boosted Boundary-Region Split-Transform-Merge (SB-BR-STM) CNN and ensemble learning. The proposed S.T.M. block employs multi-path dilated convolutional, Boundary, and regional operations to capture the homogenous and heterogeneous global malicious patterns. Moreover, diverse feature maps are achieved using transfer learning and multi-path-based squeezing and boosting at initial and final levels to learn minute pattern variations. Finally, the boosted discriminative features are extracted from the developed deep SB-BR-STM CNN and provided to the ensemble classifiers (SVM, M.L.P., and AdaboostM1) to improve the hybrid learning generalization. The performance analysis of the proposed DSBEL framework and SB-BR-STM CNN against the existing techniques have been evaluated by the IOT_Malware dataset on standard performance measures. Evaluation results show progressive performance as 98.50% accuracy, 97.12% F1-Score, 91.91% MCC, 95.97 % Recall, and 98.42 % Precision. The proposed malware analysis framework is helpful for the timely detection of malicious activity and suggests future strategies.
translated by 谷歌翻译
3D point clouds are rich in geometric structure information, while 2D images contain important and continuous texture information. Combining 2D information to achieve better 3D semantic segmentation has become mainstream in 3D scene understanding. Albeit the success, it still remains elusive how to fuse and process the cross-dimensional features from these two distinct spaces. Existing state-of-the-art usually exploit bidirectional projection methods to align the cross-dimensional features and realize both 2D & 3D semantic segmentation tasks. However, to enable bidirectional mapping, this framework often requires a symmetrical 2D-3D network structure, thus limiting the network's flexibility. Meanwhile, such dual-task settings may distract the network easily and lead to over-fitting in the 3D segmentation task. As limited by the network's inflexibility, fused features can only pass through a decoder network, which affects model performance due to insufficient depth. To alleviate these drawbacks, in this paper, we argue that despite its simplicity, projecting unidirectionally multi-view 2D deep semantic features into the 3D space aligned with 3D deep semantic features could lead to better feature fusion. On the one hand, the unidirectional projection enforces our model focused more on the core task, i.e., 3D segmentation; on the other hand, unlocking the bidirectional to unidirectional projection enables a deeper cross-domain semantic alignment and enjoys the flexibility to fuse better and complicated features from very different spaces. In joint 2D-3D approaches, our proposed method achieves superior performance on the ScanNetv2 benchmark for 3D semantic segmentation.
translated by 谷歌翻译
Large language models have recently attracted significant attention due to their impressive performance on a variety of tasks. ChatGPT developed by OpenAI is one such implementation of a large, pre-trained language model that has gained immense popularity among early adopters, where certain users go to the extent of characterizing it as a disruptive technology in many domains. Understanding such early adopters' sentiments is important because it can provide insights into the potential success or failure of the technology, as well as its strengths and weaknesses. In this paper, we conduct a mixed-method study using 10,732 tweets from early ChatGPT users. We first use topic modelling to identify the main topics and then perform an in-depth qualitative sentiment analysis of each topic. Our results show that the majority of the early adopters have expressed overwhelmingly positive sentiments related to topics such as Disruptions to software development, Entertainment and exercising creativity. Only a limited percentage of users expressed concerns about issues such as the potential for misuse of ChatGPT, especially regarding topics such as Impact on educational aspects. We discuss these findings by providing specific examples for each topic and then detail implications related to addressing these concerns for both researchers and users.
translated by 谷歌翻译
Conventional methods for human motion synthesis are either deterministic or struggle with the trade-off between motion diversity and motion quality. In response to these limitations, we introduce MoFusion, i.e., a new denoising-diffusion-based framework for high-quality conditional human motion synthesis that can generate long, temporally plausible, and semantically accurate motions based on a range of conditioning contexts (such as music and text). We also present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework through our scheduled weighting strategy. The learned latent space can be used for several interactive motion editing applications -- like inbetweening, seed conditioning, and text-based editing -- thus, providing crucial abilities for virtual character animation and robotics. Through comprehensive quantitative evaluations and a perceptual user study, we demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature. We urge the reader to watch our supplementary video and visit https://vcai.mpi-inf.mpg.de/projects/MoFusion.
translated by 谷歌翻译
Dynamic neural networks (DyNNs) have become viable techniques to enable intelligence on resource-constrained edge devices while maintaining computational efficiency. In many cases, the implementation of DyNNs can be sub-optimal due to its underlying backbone architecture being developed at the design stage independent of both: (i) the dynamic computing features, e.g. early exiting, and (ii) the resource efficiency features of the underlying hardware, e.g., dynamic voltage and frequency scaling (DVFS). Addressing this, we present HADAS, a novel Hardware-Aware Dynamic Neural Architecture Search framework that realizes DyNN architectures whose backbone, early exiting features, and DVFS settings have been jointly optimized to maximize performance and resource efficiency. Our experiments using the CIFAR-100 dataset and a diverse set of edge computing platforms have seen HADAS dynamic models achieve up to 57% energy efficiency gains compared to the conventional dynamic ones while maintaining the desired level of accuracy scores. Our code is available at https://github.com/HalimaBouzidi/HADAS
translated by 谷歌翻译
Malaria is a potentially fatal plasmodium parasite injected by female anopheles mosquitoes that infect red blood cells and millions worldwide yearly. However, specialists' manual screening in clinical practice is laborious and prone to error. Therefore, a novel Deep Boosted and Ensemble Learning (DBEL) framework, comprising the stacking of new Boosted-BR-STM convolutional neural networks (CNN) and ensemble classifiers, is developed to screen malaria parasite images. The proposed STM-SB-BRNet is based on a new dilated-convolutional block-based split transform merge (STM) and feature-map Squeezing-Boosting (SB) ideas. Moreover, the new STM block uses regional and boundary operations to learn the malaria parasite's homogeneity, heterogeneity, and boundary with patterns. Furthermore, the diverse boosted channels are attained by employing Transfer Learning-based new feature-map SB in STM blocks at the abstract, medium, and conclusion levels to learn minute intensity and texture variation of the parasitic pattern. The proposed DBEL framework implicates the stacking of prominent and diverse boosted channels and provides the generated discriminative features of the developed Boosted-BR-STM to the ensemble of ML classifiers. The proposed framework improves the discrimination ability and generalization of ensemble learning. Moreover, the deep feature spaces of the developed Boosted-BR-STM and customized CNNs are fed into ML classifiers for comparative analysis. The proposed DBEL framework outperforms the existing techniques on the NIH malaria dataset that are enhanced using discrete wavelet transform to enrich feature space. The proposed DBEL framework achieved accuracy (98.50%), sensitivity (0.9920), F-score (0.9850), and AUC (0.997), which suggest it to be utilized for malaria parasite screening.
translated by 谷歌翻译
Spatial perception is a key task in several robotics applications. In general, it involves the nonlinear estimation of hidden variables that represent the state of the robot/environment. However, in the presence of outliers the standard nonlinear least squared formulation results in poor estimates. Several methods have been considered in the literature to improve the reliability of the estimation process. Most methods are based on heuristics since guaranteed global robust estimation is not generally practical due to high computational costs. Recently general purpose robust estimation heuristics have been proposed that leverage existing non-minimal solvers available for the outlier-free formulations without the need for an initial guess. In this work, we propose two similar heuristics backed by Bayesian theory. We evaluate these heuristics in practical scenarios to demonstrate their merits in different applications including 3D point cloud registration, mesh registration and pose graph optimization.
translated by 谷歌翻译